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Abstract

There are various representations for encoding graph structures, such as artificial
neural networks (ANNs) and circuits, each with its own strengths and weaknesses.
Here we analyze edge encodings and show that they produce graphs with a node
creation order connectivity bias (NCOCB). Additionally, depending on how in-
put/output (I/O) nodes are handled, it can be difficult to generate ANNs with
the correct number of I/O nodes. We compare two edge encoding languages, one
which explicitly creates I/O nodes and one which connects to pre-existing I/O nodes
with parameterized connection operators. Results from experiments show that these
parameterized operators greatly improve the probability of creating and maintain-
ing networks with the correct number of I/O nodes, remove the connectivity bias
with I/O nodes and produce better ANNs. These results suggest that evolution with
a representation which does not have the NCOCB will produce better performing
ANNs. Finally we close with a discussion on which directions hold the most promise
for future work in developing better representations for graph structures.

1 Introduction

In the field of evolutionary computation, many problems are cast as the evo-
lution of graph structures. The two most common of these are the evolution of
artificial neural networks (ANNs), such as for controllers for robots [28], and
the evolution of circuits [24,35]. As yet most work has achieved only simple
circuits with few components and ANNs capable of only basic behaviors. For
this work to be of practical use it is necessary to improve the evolutionary
ability of these systems to scale to more complex and interesting results.
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To evolve more complex and powerful ANNs and circuits the evolvability and
scalability of the representation used to encode them become increasingly more
important. For a number of years it has been recognized that representing
designs with a genotype that directly encodes the solution will not scale to
complex structures because of the exponential growth in the size of the design
space [1,4,6,15,17]. The alternative to evolving with a direct encoding is to use
a representation that indirectly specifies it, such as by using a genotype which
consists of program for building the desired type of graph structure.

Of the different indirect representations that have been developed for encoding
graph structures one that has shown much promise is edge-encoding (EE) lan-
guages, which encodes a graph with a program of graph-construction operators
that act on the edges of a graph [25]. In this paper we point out three differ-
ent shortcomings of edge-encoding languages. The main problem we identify
with EE is the node creation-order connectivity bias (NCOCB). EE has this
bias because the connectivity of a node is determined by the number of graph
construction operators that are beneath it in the tree-structured genotype:
at one extreme half the nodes in a typically created graph will have a single
input and a single output since they were produced from leaf operators in the
genotype and at the other extreme one node will have roughly twice the num-
ber of connections as the next most highly connected node. Another problem
with EE occurs if special node-construction operators are used for creating
input/output (I/O) nodes, in which case most randomly created individuals
will not have the desired number of I/O nodes and as evolution proceeds the
variation operators will have a high probability of changing the genotype so
that it produces networks with incorrect numbers of I/O nodes.

One way to address the problems of producing the correct number of I/O
nodes and the NCOCB with I/O nodes is by changing the construction lan-
guage. Rather than having operators in the language for creating a new I/O
node, or assigning the nth created node as the ith I/O node, an alternative
is to start with the desired number of I/O nodes and then use parameterized-
connection operators for adding edges to these nodes. Problems in creating
and maintaining networks with the correct number of I/O nodes are reduced
since all networks start with the desired number and no operators exist for
creating/removing them. Also, with parameterized connection operators the
expected number of connections for all I/O nodes is equal for randomly created
genotypes and does not suffer from the NCOCB.

The rest of the paper is organized as follows. First, a review of the shortcom-
ings of other representations for graph structures is given so as to motivate
our focus on edge encodings. This is followed by a description of a canoni-
cal method for using edge encoding to represent artificial neural networks as
well as two methods for connecting to I/O nodes. Next we present our ex-
periments which show the different biases with edge-encoding operators and
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demonstrate that evolution with parameterized operators for connecting to
I/O nodes is better at producing networks that solve 3-parity and produces
better controllers on a computer-simulated goal-scoring task. Since the param-
eterized edge encoding does not have the NCOCB on I/O nodes this suggests
that evolution with a representation that does not have the NCOCB at all
may perform even better. Finally we close with a discussion on the underlying
problem with constructing graphs from tree-structured representations using
edge operators and conclude with a summary.

2 A Review of Representations for Graph Structures

To understand why EE has become a popular choice for evolving graph struc-
tures it is worth reviewing the other representations for encoding graph struc-
tures and the shortcomings that these representations have.

As an aid to understanding the shortcomings of other representations they
are categorized by using a classification scheme for predicting the scalability
of a representation based on its properties of combination, control flow and
abstraction [13,15,17], which is summarized in table 1. To indicate the com-
binative properties of a representation, the first column of the table specifies
the structure in which building blocks are assembled (eg. parameters, strings,
trees, matrices). For these entries plural vs. singular is used to distinguish be-
tween a representation which has a single string/tree/matrix (eg. DCGP) or
those which maintain a collection of strings/trees/matrices (eg. GENRE). The
remaining columns are for the properties of Control Flow (Iteration and Con-
ditionals) and Abstraction (Labeled procedures that can be called, Parameters
to these procedures, and the ability to call these labeled procedures Recur-
sively). Using these properties open-ended representations, those which are not
merely parameterizations, can be placed into three broad categories. Depend-
ing on whether or not a representation has reuse (such as through iteration or
abstraction) the class of open-ended representations is divided into generative
representations, which allow for reuse of the genotype in creating the pheno-
type, and non-generative representations. Non-generative representations can
also be further divided into direct representations in which the genotype being
evolved is the phenotype and indirect representations in which there is some
processing performed on the genotype to produce the phenotype.

There have been many non-generative representations which encode a graph
structure either directly or indirectly. Examples of direct representations for
encoding graph structures are GNARL [2] and Parallel Distributed Genetic
Programming (PDGP) [31]. With GNARL, the genotype is a neural network
that is evolved through mutation only and with PDGP a graph-structured
computer program is represented by itself. One example of an indirect repre-
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sentation is the simple developmental model of Nolfi and Parisi [29,30] in which
networks are created by placing neurons on a two-dimensional plane with links
between neurons formed through an artificial growth process. Their represen-
tation consists of a sequence of gene parameters which include whether or not
the neuron exists, its location, and how links branch out from it. Difficulties
with this representation are the computational overhead of calculating neuron-
link intersections during the construction process and the limited means by
which the growth of links is specified. Since none of these systems can hierar-
chically encapsulate and construct modules or reuse elements of the genotype
none of these systems will scale to large networks.

Possibly the first example of a generative representation for encoding ANNs is
Kitano’s L-system for matrices [19]. In Kitano’s system each production rule
rewrites a symbol with a 2 by 2 matrix, unlike traditional L-systems which op-
erate on strings of symbols [23]. While this matrix L-system seemed to perform
well in comparison with a direct representation, a later investigation found it
to be no better [33]. Possible reasons why this system does not outperform
a direct representation is the limitations of the rules: each rule specifies the
replacement of a symbol with a 2x2 matrix, which is a parameterized con-
struct rather than an open-ended construct that allows for the combination of
primitives to create more complex rules; and the rules are not able to call each
other recursively which limits their reusability. An additional shortcoming of
this approach is that it is difficult to ensure that the final weight matrix has
continuous rows and columns that go all the way across the matrix.

Recursion is allowable in two other representations based on L-systems by
using strings instead of matrices. With the system of Boers et al. [5] each
alphabetic symbol in the L-system represents a neuron in the ANN and a
grouping of symbols inside brackets are used to specify a sub-network. Con-
nections are made between adjacent neurons, or modules, and these are always
forward connections. Shortcomings with this approach are that it only encodes
feed forward networks and does not have a method for specifying edge weights
or the properties of a neuron. In the work of Haddow et al. they evolve circuits
by using context sensitive L-systems as a generative representation for binary
strings which specify the LUT logic tables of Field-Programmable Gate Arrays
(FPGAs) [12]. While this representation has reuse, and thus is a generative
representation, it is not clear that reusing the same set of bits in different parts
of a LUT configuration table is a good form of reuse since a reused block of
bits will have a different phenotypic effect if it is placed in a different part of
a LUT configuration table.

With Miller and Thomson’s Developmental Cartesian Genetic Programming
(DCGP) an integer based genotype is used to encode a graph structure [27].
The integers in the genotype refer to nodes in the graph and after all nodes
have been created the connections are made using the modulo operator (with
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the total number of nodes in the graph as the base) to determine which node
an integer refers to. While this type of encoding does not have the NCOCB, a
problem with it is that if the number of nodes change, through either mutation
or recombination, then all the references to nodes will change since the base
for the modulo operator will be a different number. Consequently it is difficult
to alter the network topology without also radically changing the network’s
behavior. Not surprisingly they found that their developmental system for
evolving circuits performed worse than a direct representation on a binary
adder problem and concluded that their representation is more difficult to
evolve than a direct representation.

The first tree-structured representation for encoding graphs is Gruau’s cellular
encoding (CE) [11]. With this representation each node of the tree is a graph
construction operator that changes the graph by performing an operation on
one of the nodes. Iteration is present through a recurse node for re-executing
the tree, and abstraction is implemented through labeled subtrees, which are
called automatically defined sub-networks (ADSNs) [11]. Advantages of CE’s
indirect, tree-structured representation are that it better allows for variable
sized graphs than directly using a weight matrix, and GP style recombination
between two trees is easier and more meaningful than trying to swap sub-
networks with a graph-structured representation. Also, the representation is
generative with both iteration and abstraction implemented. These advantages
led to a number of variations on CE by using different graph construction
operators [8,9].

Yet Luke and Spector noted that CE has serious drawbacks because its graph-
construction operators act primarily on nodes [25]. One shortcoming is that
operators are execution-order dependent and, as a result, swapping subtrees in
the genotype does not result in a swapping of subgraphs of the phenotype. A
second shortcoming is that operators on nodes can create an arbitrary number
of edges – splitting a node in two will create a second node with the same inputs
and outputs – which is problematic for specifying the weights of all the newly
created edges. The third shortcoming of CE is that it has a strong bias toward
producing very dense graphs, which makes it ill-suited for evolving circuits.

As an alternative to CE, Luke and Spector proposed a graph construction
language called edge encoding (EE) in which operators act on edges instead
of on nodes [25]. Advantages of EE are that at most one link is created with
a construction operator, which allows either the leaf nodes of the genotype or
the construction operator itself to specify the weight to attach to that link,
and, unlike with CE, sub-trees of construction operators will create the same
sub-network independent of where in the construction-tree they are located. In
their implementation they used labeled sub-trees and implemented recursion
without parameters by setting a maximum recursion depth. Previously we used
EE as the language for encoding ANNs in GENRE and used it to evolve ANNs
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Table 1
Properties of different open-ended representations for encoding graphs.

Structure Control Flow Abstraction

System Iter. Cond. Labels Param. Recur.

Direct

AS&P (GNARL) [2] graph no no no no no

Poli (PDGP) [31] graph no no no no no

Indirect

N&P [30] parameters no yes no no no

Generative

BKH&S [5] strings no no yes no yes

Gruau (CE) [10] trees yes no yes no no

HT&vR [12] strings no yes yes no no

Hornby (GENRE) [13] strings yes yes yes yes yes

Kitano [19] parameters no no yes no no

L&S (EE) [25] trees no no yes no yes

M&T (DCGP) [27] string yes yes no no no

to calculate parity and as controllers for robots [13,17]. This form of graph
construction language has become common in representations for constructing
circuits and is frequently called CE instead of EE [21].

Of these different generative representations for encoding graph structures,
only edge encoding has yet to be shown to have serious drawbacks. The focus
of the rest of this paper is an analysis of edge encoding languages and its
shortcomings for representing graph structures.

3 Edge Encodings

To demonstrate the shortcomings of EE, in the following sections experiments
will be performed using them to encode ANNs. The ANNs that are used
are recurrent networks similar to those of Beer and Gallagher [3], and of our
previous work [16,18]. Each non-input neuron has an input bias, θ, and a time
constant, τ . The activation value of a non-input neuron ai at time t is:

ai,t = τiai,t−1 + (1− τ)tanh
(∑

j

Wjiaj,t−1 + θi
)

(1)
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The activation values of input neurons are given as inputs to the network.

The different methods for representing graphs with EE all start with an initial
graph configuration and then new nodes and edges are added by executing
the operators in the assembly procedure. The following list is a typical set
of graph-construction operators in an edge-encoding language, for which the
operators are acting on the edge connecting from A to B:

• add reverse: creates a link from B to A.
• add split(n): creates a new neuron, C, adds a new link from A to C and

creates a new edge connecting from neuron C to neuron B. The bias of
neuron C is set to θ = n, and its time constant is set to zero.
• add split cont(m,n): acts the same as add split(), only it creates a neu-

ron with a bias of θ = m and a decay constant of τ = n.
• connect: creates a new link from A to B.
• dest to next: changes the to-neuron in the current link to its next sibling.
• loop: creates a new link from neuron B to itself. The no-op operator does

nothing.
• set weight(n): sets the weight of the current link to n.
• source to next: changes the from-neuron in the current link to its next

sibling.
• source to parent: changes the from-neuron in the current link to the input-

neuron of the current from-neuron.

Of these operators add split(n) and add split cont(m,n) have exactly three
children operators since after their execution the edge they act on becomes
three edges. The set weight(n) operator has no children, consequently it is
always a leaf node and the no-op has either zero or one children so it can be
either a leaf node and halt the development of the graph on the current edge,
or it can be used to delay execution on the current edge for a round allowing
time for the rest of the graph to develop more. Execution of the rest of the
operators results in the addition of a single new edge to the graph so they have
exactly two children operators: one to continue graph construction along the
original edge and one operator to continue construction along the new edge.

Using the operators described above the sequence of graphs from figure 1.b-
1.i illustrates the construction of a network from the genotype in figure 1.a.
Graphs are constructed from this genotype by starting with a single neuron
linked to itself, figure 1.b, and executing the operators in the assembly pro-
cedure in breadth-first order. First, executing split(0.01) adds node b with
a bias of 0.01 and pair of links, figure 1.c. The operator set-weight(0.1)

sets the weight of the link −→aa to 0.1, no-op performs no operation, and then
split(0.02) results in the creation of neuron c, with a bias of 0.02, and
two more links, figure 1.d. Source-to-parent creates a second link,

−→
ab, and

set-weight(0.2) sets the weight of the link
−→
ba to 0.2, figure 1.e. The second
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Fig. 1. A tree-structured encoding of a network (a), with dashed-lines to separate
the layers, and (b-j) construction of the network it encodes.
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source-to-parent operator creates the link −→ac, executing set-weight(0.3)

sets the weight of the link −→ca to 0.3 and set-weight(-0.2) results in a weight
of -0.2 assigned to the link

−→
ab, figure 1.f. The source-to-next operator re-

sults in the link
−→
bb being created, figure 1.g. The operator set-weight(0.4)

sets the weight of link
−→
bc to 0.4 and then executing connect creates an addi-

tional link −→ac, figure 1.h. Executing set-weight(0.5) sets the weight of link−→
ab to 0.5, set-weight(0.6) sets the weight of link

−→
bb to 0.6, no-op sets the

weight of link
−→
ab to 0.0, and set-weight(0.7) sets the weight of link −→ac to

0.7, figure 1.i. After all tree-construction operators have been executed, there
is a post-processing phase that consolidates the weights of links with the same
source and destination nodes, figure 1.j. In addition, when evolving artificial
neural networks with I/O nodes, there is an additional post-processing prun-
ing step that removes from the ANN all neurons that are not on a directed
path to an output neuron. Both of these post-processing phases are used to
simplify the ANN so as to reduce the amount of computation needed to update
it.

4 Node Creation Order Connectivity Bias

A problem with using EE operators and tree-structured assembly procedures
is that nodes created from operators early in the construction process tend to
have a greater connectivity (sum of number of edges into and out of them)
than nodes created later in the process. We call this bias the node creation-
order connectivity bias (NCOCB) and it can be demonstrated by examining
the average connectivity of randomly created, edge-encoded graphs.

The graph in figure 2.a contains plots of the average connectivity of graphs
created with graph-constructing, tree-structured genotypes of different depths.
The lines in the graph are plots of the average connectivity for the ith created
node averaged over ten thousand randomly created genotypes for trees of
depths five, ten, fifteen, twenty and twenty-five. From this graph it can be
seen that there is an inverse-exponential relation between node creation order
and its connectivity: the first node that is created has a higher connectivity
than every other node in the graph and the last half of the nodes created
having a connectivity of two.

Because the connectivity of a node is strongly based on its height and since
there is a bias in the distribution of the heights of operators in a tree-structured
genotype there is a bias in the distribution of node connectivities, figure 2.b.
There will be one node in the graph with a connectivity higher than all the
others since there is only one operator at the top of the tree-structured geno-
type and roughly half the nodes in the graph will have a connectivity of two
(one input and one output edge) since around half the operators in the geno-

9



 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1  4  16  64  256  1024

co
nn

ec
tiv

ity

node creation number

depth 25
depth 20
depth 15
depth 10
depth 5

(a)

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0  2  4  6  8  10  12  14  16  18  20

nu
m

be
r 

of
 n

od
es

connectivity

depth 25
depth 20
depth 15
depth 10
depth 5

(b)

Fig. 2. Graphs of (a) the average node connectivity by order of creation, and (b)
the number of nodes with a given connectivity for randomly created individuals of
different tree depths.
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type are leaf nodes and the nodes they create in the graph have a connectivity
of two.

One consequence of this bias is that I/O nodes that are created early in the
construction process will have a significantly higher number of output/input
edges than those I/O nodes created at the end of the construction process.
Thus if I/O nodes are created by the tree-structured assembly procedure, the
first I/O nodes will have significantly more inputs/outputs from/to them than
those created later in the construction process. For input nodes, this suggests
that the first inputs are likely to have a greater influence on the behavior of
an ANN than the latter inputs and for output nodes this suggests that there
is more processing of inputs in calculating the activation values of the first
output nodes than for the latter output nodes. In the following section we will
discuss two methods for handling I/O nodes, one of which does not have the
NCOCB.

5 Handling Input/Output Nodes

A consideration with adapting EE to representing ANNs is determining how
to specify the input and output (I/O) nodes. One approach is to assign the
first n nodes to be the inputs and the next m nodes to be the outputs. Yet with
this approach, if the genotype is modified such that a node is added/deleted,
then the function of all I/O nodes after that will shift and it is unlikely that
the resulting ANN will perform well. A better method for handling I/O nodes
is to add operators to the language for creating I/O nodes, and we call this
method a constructive edge-encoding language (CEEL). 1 Since this method
has problems in creating the correct number of I/O nodes and also has a node
creation-order connectivity bias (NCOCB) another approach is to use a pa-
rameterized edge-encoding language (PEEL). With PEEL, graph construction
starts with a single hidden node and edge along with the desired number of
I/O nodes. The hidden nodes and edges in the graph are constructed as with
CEEL, but connections to the I/O nodes are made through parameterized I/O
connection operators. We now describe CEEL and PEEL in greater detail.

Constructive edge encoding language (CEEL) extends the EE language of the
previous section by using specialized operators for creating I/O nodes. There
is one operator for creating input nodes and one operator for creating output
nodes:

• add input: creates a new neuron, C, which is an input neuron, and adds a

1 Previously this language was called SEEL, for Standard Edge Encoding Lan-
guage[14].
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new link from C to A.
• add output split(n): performs a split(n) operation with the newly cre-

ated neuron set to an output neuron. The bias of this new node is set to
θ = n and the time constant is set to τ = 0.

In the above operator descriptions the edge that is being acted on connects
from node A to node B. Since add input adds one new edge to the graph this
operator has two successors, one successor to continue construction on the
original edge and one successor to start construction on the new edge. As with
the split(n) operator, the output split(n) operator has three successors to
continue graph construction along each of the three resulting edges.

Examples of the two CEEL I/O construction operators are shown in figure 3.

Figure 3.a consists of a graph with the current edge,
−→
bc, in bold. If the next

operator to be executed is add input, the result is the graph shown in fig-
ure 3.b. Alternatively, if the next operator is add output split(0.25) the
resulting graph is that shown in figure 3.c.

a

b c

0.1

a

b c

0.1

d

a

b c

0.1

d

(a) (b) (c)

Fig. 3. Adding an I/O node: (a) the original graph with the active edge connecting
from b to c; (b) the resulting graph after executing add input; (c) the resulting
graph if add output (0.25) is executed instead.

As was discussed in section 4, EE suffers from a connectivity bias based on the
order in which nodes are created and since CEEL creates I/O nodes as part
of the construction process this connectivity bias affects I/O nodes that are
created during the construction process. A method to remove the connectivity
bias with I/O nodes is to have these nodes exist in the initial graph and then
adding connections to them with parameterized connection operators:

• connect input(i): creates a link from the ith input neuron to B.
• connect output(i): creates a link from B to the ith output neuron.

Since each of these operators creates a new edge, both operators have exactly
two children operators: one to continue network construction along the original
edge and one to construct along the new edge. We call this language PEEL,
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for Parameterized Edge Encoding Language. With PEEL, the connectivity
bias of the I/O nodes is dependent on the bias in generating the parameters
to the I/O connection operators and there will be no connectivity bias for I/O
nodes if there is a uniform distribution in generating parameter values.

Given that PEEL does not have the NCOCB with I/O nodes and, as we will
show in the following sections, is more robust to creating and maintaining
ANNs with the desired number of I/O nodes it is worth noting that there are
situations in which CEEL would be the preferred method for handling I/O
nodes. One example of this is when the number of I/O nodes is not known
ahead of time, such as when an individual encodes for the physical structure
of a robot, with a variable number of actuators and sensors, along with the
ANN controller [17].

6 Comparing CEEL vs. PEEL on Producing Valid ANNs

To demonstrate that PEEL is better than CEEL for creating and maintain-
ing genotypes that produce ANNs with the correct number of I/O nodes we
present experiments comparing the two languages. In these experiments we
compare the number of valid ANNs that are created using the two edge en-
coding languages. A network is considered valid if it has four input neurons
and four output neurons (arbitrary values selected for this experiment) and
for each input neuron there is a path to at least one output neuron and each
output neuron is on a path from at least one input neuron.

Table 2 shows the probability that a randomly created individual with a geno-
type of a given depth will construct a valid network, with these values based
on generating ten thousand random individuals for each configuration. With
CEEL the probability of creating a valid network had a maximum value of
just under 2% for trees of depth seven whereas with PEEL the probability
of creating a valid network asymptotically increases beyond 88% as the tree
depth increases beyond 13. Thus valid networks are more likely to be created
with PEEL than with CEEL. The reason PEEL does not score 100% even
though it starts with the correct number of I/O neurons is because some in-
put nodes may not be on a path to an output node and are pruned in the
post-processing phase of ANN construction.

In addition to the problem of creating initial individuals with the correct num-
ber of I/O nodes, CEELs have difficulty maintaining these numbers under
mutation and recombination. To show that PEELs better maintain valid net-
works we compare the number of networks that still have four inputs and four
outputs after mutation and recombination from valid parents. For this com-
parison the mutation operator modifies an individual by changing one symbol
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Table 2
Percentage of valid networks generated out of ten thousand randomly created tree-
structured assembly procedures.

Depth ≤4 5 6 7 8 9 10 11 12 13

CEEL 0 0.03 1.03 1.83 0.93 0.34 0.13 0.06 0.02 0

PEEL 0 0 0.12 3.14 19.7 46.6 67.3 80.7 86.4 88.5

with another, perturbing the parameter value of a symbol, adding/deleting
some symbols, or recombining an individual with itself. Two types of recom-
bination are used, with equal probability of using one or the other. The first
recombination operator is the standard GP recombination that swaps random
subtrees between parents [20]. The second recombination operator is similar
to one-point crossover [32] and we call it matched recombination (MR). MR
works by lining up two trees and, starting at the root, matches up the children
nodes by type and argument values, finds the locations at which subtrees differ
and then picks one of these places at random to swap, similar to homologous
crossover [7,22].

Since random trees of depth seven produced the most valid networks with
CEEL, we compared ten thousand mutations and recombinations between
CEEL and PEEL on valid, randomly created individuals. With CEEL, 15.2%
of mutations and 20.8% of recombinations resulted in the offspring having an
incorrect number of I/O nodes. In comparison, with PEEL the failure rate is
6.5% with mutation and 10.5% with recombination. These results show that
networks encoded with PEEL are twice as robust to variation operators than
those encoded with CEEL.

7 Comparing CEEL vs. PEEL on Calculating 3-Parity

Having shown that PEEL is better suited for creating and maintaining valid
networks that are generated at random, we are interested in determining if this
continues to be the case on individuals that are being evolved and also if there
is a difference in evolutionary performance. To see if this is the case, we evolve
ANNs to solve the odd-3-parity function using CEEL and PEEL to encode
these networks. The odd-3-parity function returns true if the number of true
inputs is odd and returns false otherwise. This function is difficult because
the correct output changes for every change of an input value. In addition, the
even/odd-n-parity functions have become a standard benchmark function in
genetic programming (GP) and past experiments have shown that GP does
not solve the five-parity (or higher) problem without automatically defined
functions [20].
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For these experiments a population of 200 individuals was evolved for 500
generations using a generational evolutionary algorithm. To create the initial
population individuals were generated randomly until each individual in the
population encoded a network with exactly three inputs and one output. Par-
ents were selected for reproduction using remainder-stochastic sampling based
on rank, using exponential scaling with a scaling factor of 0.035. New individu-
als were created by randomly deciding to use either mutation or recombination
with equal probability of picking either.

An individual is evaluated by testing the ANN it encodes on each of the
23 possible inputs, using an input value of 1.0 for true and -1.0 for false.
Networks are updated up to four times with the value of the output neuron
examined after each update iteration to determine the parity value calculated
for that set of input values. If the value of the output neuron is greater than
0.9 then the output of the network is taken as true and if the value of the
output neuron is less than −0.9 then the output of the network is taken as
false. If the value of the output neuron is between −0.9 and 0.9 then the
network is updated again until its output value is either greater than 0.9
or less than −0.9, for a maximum of three additional updates. The network
receives a score of 2.0 for returning the correct parity value and a score of
-1 for an incorrect answer. If, after four network updates, the value of the
output neuron is between −0.9 and 0.9 then there is no further updating of
the network and the individual receives a score of 1.0 for this test if either the
value of the output neuron is positive and the parity was true or if the value
of the output neuron is negative and the parity is false. No penalty is given
for having an incorrect value in this case. The fitness value of an individual
is the sum of its scores on all eight possible inputs with the maximum fitness
being 16.

Out of 500 evolutionary runs with each CEEL and PEEL, evolution with
CEEL solves the 3-parity problem 127 times and evolution with PEEL solves
it 327 times. Evolved networks were recurrent with sizes in the range of 5 to 40
nodes. The evolutionary performance with both encodings is shown in figure 4,
which contains plots of the best individual in the population averaged over
the 500 evolutionary runs. The final average values are (mean±s.e.): CEEL,
12.45±2.46; PEEL, 14.25±2.55. Using a two-tailed Mann-Whitney test the
difference in performance is highly significant with P < 0.001.

In the previous section it was shown that PEEL was better at producing valid
networks than was CEEL, we now examine whether or not this holds true over
the course of evolution. The graph in figure 5 plots the percentage of offspring
created with mutation and recombination that still encoded ANNs with 3
inputs and 1 output. These graphs show that within a couple of generations
of evolution the success rate of producing valid ANNs improves considerably
over the success rate with applying variation to randomly created networks,

15



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  100  200  300  400  500

fit
ne

ss

generation

PEEL
CEEL

Fig. 4. Fitness of the best evolved ANN averaged over 500 trials.

Table 3
Average connectivity of I/O neurons at different stages of evolution.

CEEL PEEL

Generation I/O 1 I/O 2 I/O 3 I/O 4 I/O 1 I/O 2 I/O 3 I/O 4

0 2.58 1.68 1.36 1.23 1.48 1.48 1.48 2.20

10 4.29 1.74 1.32 1.14 1.56 1.57 1.56 2.23

50 4.48 1.79 1.33 1.17 1.98 2.04 1.91 2.83

100 4.59 1.82 1.39 1.17 2.24 2.34 2.13 3.18

250 4.75 1.86 1.45 1.22 2.42 2.61 2.29 3.49

500 4.76 1.84 1.49 1.29 2.59 2.78 2.42 3.70

the experiment of the previous section. Yet variation on networks encoded with
PEEL is still more than three times as likely to produce valid networks than
variation applied to networks encoded using CEEL: in the final generation the
success rate with CEEL is 92.9% with mutation and 95.1% with recombination
and with PEEL it is 98.0% with mutation and 98.9% with recombination. Since
the success rate is both fairly close between CEEL and PEEL and quite high,
it would seem that a likely reason for the large and significant performance
difference between CEEL and PEEL is the NCOCB.

While the NCOCB was shown to be significant on randomly generated graph
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Fig. 5. Percentage of networks that are valid after mutation and recombination
from 500 evolutionary runs with a population size of 200 and an equal probability
of applying mutation or recombination.

Table 4
Average node location of I/O neurons at different stages of evolution.

CEEL PEEL

Generation In 1 In 2 In 3 Out 1 In 1 In 2 In 3 Out 1

0 3.98 6.82 9.60 6.53 1 2 3 4

10 4.01 6.57 9.16 3.77 1 2 3 4

50 3.95 6.38 8.86 3.63 1 2 3 4

100 3.93 6.26 8.69 3.60 1 2 3 4

250 3.82 6.08 8.48 3.53 1 2 3 4

500 3.75 5.89 8.22 3.48 1 2 3 4

encodings, it is of interest to know whether or not the NCOCB is reduced,
or removed, over the course of evolution. The graphs in figure 6 are plots of
the average connectivity for nodes in graphs at different stages of evolution
with both CEEL and PEEL. In both graphs the NCOCB is readily apparent,
although the vast majority of graphs had less than 30 nodes so the difference in
the average connectivity of nodes beyond node 30 node is not very statistically
significant. Note that with PEEL, the first four nodes are the I/O nodes and
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Fig. 6. Average NCOCB with CEEL and PEEL at different stages of evolution on
the 3-parity problem.
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are present at initialization so the NCOCB bias starts at node 5 with PEEL.

Since the difference between CEEL and PEEL is in how they handle I/O nodes
it is worth examining the difference in NCOCB between CEEL and PEEL on
I/O nodes. With the parameterized connection operators of PEEL there is
no node NCOCB with its I/O nodes, unlike with CEEL where I/O node 1
always has a higher connectivity than I/O node 2, which always has a higher
connectivity than I/O node 3 (table 3). In fact, with CEEL, increasing the
connectivity of more important I/O nodes (in this case, the output node) is
achieved by moving them to being created earlier in the graph construction
process. The entries in table 4 show that with CEEL the average node location
of I/O nodes moves to earlier in the construction process over the course of
evolution, with the output node very quickly becoming the first I/O that is
created.

That neither CEEL nor PEEL achieved close to a 100% success rate on the
somewhat trivial problem of evolving 3-parity networks further suggests that
neither of these variants of EE is well suited to evolving ANNs since other
techniques – such as pure genetic programming [20] – perform far better on
this problem.

8 Comparing CEEL vs. PEEL on a Goal-Scoring Task

In this last set of experiments, CEEL and PEEL are compared on a control
task in which an evolved ANN is evaluated by how well it performs a goal-
scoring task. For these experiments the evolutionary algorithm (EA) was run
on a cluster of five PlayStation©R 2 development systems controlled by a Linux
PC. 2 Each experiment consisted of evolving fifty individuals for fifty gener-
ations using the same generational EA that was used in the previous set of
experiments.

The goal-scoring task consists of driving a two-wheeled soccer-player in a
275x152.5, computer-simulated, walled soccer-field with goals at each end (fig-
ure 7.a). This simulator uses a physical dynamics engine based on the model
described by Witkin and Baraff [34]. The soccer player has seven sensor inputs
and two outputs: input 1 is the angle to the ball, scaled to the range −1 to
1; input 2 is the distance to the ball, scaled to the range 0 to 1; input 3 is
the angle to the goal, scaled to the range −1 to 1; input 4 is the distance to
the goal, scaled to the range 0 to 1; input 5 is the distance straight ahead,
scaled to the range 0 to 1; input 6 is the distance to the left, scaled to the
range 0 to 1; input 7 is the distance to the right, scaled to the range 0 to

2 PlayStation is a registered trademark of Sony Computer Entertainment Inc.
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1; output 1 controls the rotational speed of the right wheel, and is scaled to
−50 to 50 radians per second; and output 2 controls the rotational speed of
the left wheel, and is scaled to −50 to 50 radians per second. For input nodes
the scaling of distance values is done by first linearly scaling distances from
the range of 0.0 to 250 to values 1.0 to 0.0 (distances greater than 250 are
also mapped to 0.0) and then squaring this value to make it more sensitive to
nearer distances. An image of the different inputs is shown in figure 7.b.

Wall sensors

Goal sensor

Ball sensor

(a) (b)

Fig. 7. (a) The simulated soccer field and (b) the soccer player and its sensors.

Evaluating an individual consists of eight trials – two each with the ball ini-
tially placed in each of the four corners of the field, and the soccer-player
placed in the middle of the field – with an individual’s overall fitness being
the sum of its scores over all eight trials. Initial locations for both the player
and ball are perturbed by a small random amount and then the player is given
60 seconds (at 30 frames per second this results in 1800 network updates) to
score as many goals as it can. For each goal scored the distance from the
vehicle’s starting position to the ball plus the distance from the ball’s initial
location to the goal is added to the individual’s score. After a goal is scored the
ball is randomly located at the center of the field (with a random perturbation
of its location in the range of x±30, y±30), the minimum distances to the ball
and to the goal are reset, and the network is allowed to try to score another
goal. Once time expires, an individual’s score is increased by how much closer
it moved the player to the ball and how much closer it moved the ball to the
goal. In addition, if the player scores an own-goal, its score is reduced by the
distance it moved the ball from its starting position to its own goal. Evolved
individuals encode for recurrent neural networks with anywhere from 10 to 40
neurons and evaluating one generation of fifty individuals took approximately
four minutes.

The results of these experiments are plotted in the graph in figure 8 and show
that evolution with PEEL produces soccer players that are roughly twice as
fit as those evolved with CEEL. The final fitness values of the four trials are:
1239, 1739, 1775, and 1550 with CEEL; and 3615, 2126, 2472, and 3101 with
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Fig. 8. Fitness of the best evolved goal-scores averaged over four trials.

PEEL. Using a a two-tailed Mann-Whitney test the difference in performance
is marginally significant with P < 0.05.

The higher fitness of ANNs encoded with PEEL is reflected in the behaviors
produced by these networks. 3 ANNs encoded with CEEL produced soccer
players that tended to spin in place and move awkwardly or in a looping
pattern. These controllers only moved toward the ball somewhat haphazardly
and generally did not appear to be aiming their shots. An example of the play
of the best such network is shown in figure 9. In contrast, networks encoded
with PEEL would move to position themselves on the other side of the ball
from the goal and then either push the ball toward the goal or spin to kick
it toward the goal. The best of these networks seldom missed shots and an
example of its behavior is shown in the sequence of images in figure 10.

The NCOCB is also evident in the ANNs evolved for the goal-scoring task.
The graph in figure 11 contains plots of the average connectivity of nodes
from individuals in the final populations on the goal-scoring behavior. Once
again the NCOCB can be seen by the strong bias toward higher connectivity
on nodes created earlier in the graph construction process. The plots on this
graph are not as smooth those from evolution on parity since in this case only

3 Animations of goal-scorers controlled with ANNs evolved
using both CEEL and PEEL are available online at:
http://ic.arc.nasa.gov/people/hornby/evo control/evo control.html.
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(a) (b)

(c) (d)

Fig. 9. A soccer player, evolved using the CEEL language, in action in the simulated
soccer environment: (a) the soccer player is moving toward the ball, (b) while moving
toward the ball it stops to spin in place (a frequent behavior), (c) it reaches the ball
and starts to push it, (d) it ends up pushing it away from the desired goal.

Table 5
Average node connectivity and creation order at the end of evolution for evolved
goal-scoring ANNs.

In 1 In 2 In 3 In 4 In 5 In 6 In 7 Out 1 Out 2

CEEL

Connectivity 19.2 1.54 5.18 2.98 1.62 2.71 3.18 7.96 1.64

Order 2.72 7.60 12.1 14.6 19.0 26.1 27.2 15.4 25.4

PEEL

Connectivity 4.03 2.76 1.92 1.56 1.52 1.50 1.98 3.07 2.72

Order 1 2 3 4 5 6 7 8 9

four trials were run with each of CEEL and PEEL whereas the parity plots
are the average of 500 trials each.

Examining the average connectivity of the output nodes of ANNs in the fi-
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(a) (b)

(c) (d)

Fig. 10. A soccer player, evolved using the PEEL language, in action in the simulated
soccer environment: (a) the soccer player is moving toward the ball, (b-c) it circles
around the ball, and (d) it spins and shoots the ball into the goal then turns to the
center of the field where the ball will reappear.

nal generation of evolution shows that there is a large difference in average
connectivity between evolved ANNs encoded with CEEL and those encoded
with PEEL (table 5). With ANNs encoded with CEEL there is a much greater
number of connections to output 1 than there are to output 2, whereas with
ANNs encoded with PEEL the average number of connections to the two out-
put nodes is almost the same. This difference in connectivity may explain why
CEEL-encoded soccer players frequently spin in place when it is not beneficial
whereas PEEL-encoded soccer players drive around more smoothly.

The connectivity values listed in table 5 show that nodes created later in
the construction process sometimes have a higher connectivity than nodes
created before them. This can be understood by considering where in the
tree-structured encoding the creation of these nodes occurred. Here the order
of input nodes by connectivity is 1, 3, 7, 4, 6, 5, 2. Such a connectivity order
could be obtained with input 1 at the top of the encoding-tree, input 2 by itself
on one, small subtree and the rest of the input nodes on a second, much larger,
subtree. In this second subtree input 3 would be at the root with input 7 on its
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Fig. 11. Average NCOCB with CEEL and PEEL at the final stage of evolution on
the goal-scoring behavior.

own small sub-subtree, and the rest of the inputs on a larger sub-subtree with
input 4 at the top. Finally, on the sub-subtree with input 4 at the root, input
6 and input 5 would each be near the top of their own sub-sub-subtrees, with
the one containing input 6 being larger than the one containing input 5. Thus
connectivity is not strictly dependent on creation order rather it is determined
by the size of the encoding-tree beneath the node-creating operator.

9 Discussion

In section 4 we showed that representing graphs with tree-structured EE lan-
guages produces a connectivity bias on nodes that is based on the order they
are created in. Later we described two variations of EE languages for handling
I/O nodes, one of which (CEEL) had the NCOCB and the other (PEEL)
only had the NCOCB on hidden nodes. In comparing these two languages on
calculating 3-parity and on a goal-scoring task we found that evolution with
PEEL produced ANNs with higher fitness which suggests that the NCOCB
has significant effect on evolutionary performance. Of interest is whether there
is an EE language that does not have the NCOCB on both the I/O nodes and
the hidden nodes.

24



While we described one implementation of an edge encoding language there are
variations on what some operators do and also there are other operators that
can be used. For example, the edge-encoding language of section 3 differs from
Luke and Spector’s [25] in that here edges are not explicitly deleted, rather
they disappear if they are not assigned a weight, and the split operator used
here does not delete the link

−→
ab when it creates the new neuron c and links −→ac

and
−→
cb. An operator for explicitly deleting links would not necessarily change

the biases in resulting networks since the no-op operator with no children
has the same effect. It is likely that that the split operator used here results
in a stronger NCOCB than Luke and Spector’s would since it adds links to
existing neurons without removing any. Regardless, changes to either of these
operators would not remove the NCOCB.

In fact, although different edge-operators will affect the degree to which the
node creation order connectivity bias occurs, all edge-encoding languages with
a tree-structured representation will have the NCOCB. At a given depth in the
tree-structured genotype there is on the order of twice as many operators as
at the depth immediately above. Graph nodes produced by operators that are
leaf nodes in the genotype will have a small connectivity, which is typically one
input and one output edge. Graph nodes produced by operators that are in
the layer immediately above the leaf operators in the genotype will have their
connectivity increased by one for each of their children operators that creates
a node. By recursively going up the tree-structured genotype we see that the
connectivity of nodes in the graph is based on depth in the genotype of the
operator that creates them. Since there is a bias in the number of operators
at a given depth in the genotype – one operator is at the root of the genotype
and approximately half the operators are leafs – there is a node creation-order
connectivity bias.

An exception to the above argument is if the edge-encoding language includes
an operator for merging two nodes together. Adding an operator that merges
two nodes into one and joins their inputs and outputs could reduce the bias
somewhat because it allows for nodes created near the end of the construction
process to be merged to create one with a connectivity higher than two. But, if
instead of treating this as a newly created node it is treated as being the first
node receiving the connections of another node then the addition of a merge
operator would not remove the NCOCB, rather it would result in a stronger
bias.

A solution to creating a representation for graphs which does not have the
NCOCB comes from looking at the alternatives to tree-structured edge encod-
ings. One option is to switch to operators in which the connectivity of a new
node is not dependent on its depth in the genotype, but these would be node
operators which have their own shortcomings [25]. Another option is to change
to something other than a tree-structured genotype. While a linear genotype

25



will have the NCOCB to an even greater degree than a tree-structured geno-
type because strings are a special type of tree, a graph-structured genotype
should not have the NCOCB. With a graph-structured genotype the challenge
then would be to construct one that is both amenable to recombination and
to which generative components can be added to improve scalability. An ex-
ample of one such graph-structured, generative representation is VHDL [26],
a hardware description language for describing circuits which has features of
abstraction, hierarchy and modularity. A third option is to use a staged pro-
cess in which first the nodes are created and then links are created. With
this third option since all nodes exist before links are created there would not
necessarily be a creation-order connectivity bias.

10 Conclusion

Various representations have been developed for encoding artificial neural net-
works, circuits and other graph structures and in our review we identified
weaknesses with each them. Some were not generative, that is they did not
have genotypic reuse through either iteration or abstraction, hence evolution
with them would not scale beyond simple graph structures, or their iteration
would repeat alleles in genes where they would have different meanings. Others
were limited by such things as poor combinative ability, mutating a single el-
ement of the genotype would affect the entire phenotype disruptively. Finally,
cellular encoding, one of the more popular methods, had been shown to have
weaknesses in assigning weight values to edges and recombination of subtrees
does not preserve the phenotypic sub-networks. This left edge encoding as a
representation for encoding graph structures which had promise.

In this paper we analyzed edge encodings and identified shortcomings with this
representation. First we showed that the connectivity of a node is strongly bi-
ased by the order of its creation, and we called this weakness the node creation
order connectivity bias (NCOCB). The other weaknesses we identified are de-
pendent on how input/output nodes are handled and showed two systems for
connecting to I/O nodes, constructive edge encoding language (CEEL) and
parameterized edge encoding language (PEEL). While CEEL can handle sit-
uations in which the number of I/O nodes is not fixed, PEEL is better able
to create and maintain ANNs when the number of I/O nodes is fixed and it
does not have the NCOCB with the I/O nodes.

To demonstrate the significance of the NCOCB on evolutionary performance
we evolved ANNs for calculating 3-parity as well as for a goal-scoring task
using both CEEL and PEEL. The results from these experiments showed that
evolution of ANNs encoded using PEEL solved odd-3-parity more than twice
as often as when using CEEL and evolution with PEEL produced goal-scorers
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which had an average fitness of roughly twice that of those encoded using
CEEL. These results suggest that the NCOCB is having a significant affect
on evolutionary performance and a representation for ANNs which does not
have the NCOCB at all would perform even better.

Since all tree structured edge encoding languages will have the NCOCB to
some degree, of interest is directions to go for creating scalable representa-
tions without this shortcoming. Toward this end we identified two directions
for further work, the first being to use graph-structured representations and
the second being a two-phased approach to graph construction. Whichever di-
rection future work takes in designing new representations for encoding ANNs,
the designers will need to be aware of the different shortcomings that have been
identified for existing ones.
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